15 research outputs found

    The Epistemology of scheduling problems

    Get PDF
    Scheduling is a knowledge-intensive task spanning over many activities in day-to-day life. It deals with the temporally-bound assignment of jobs to resources. Although scheduling has been extensively researched in the AI community for the past 30 years, efforts have primarily focused on specific applications, algorithms, or 'scheduling shells' and no comprehensive analysis exists on the nature of scheduling problems, which provides a formal account of what scheduling is, independently of the way scheduling problems can be approached. Research on KBS development by reuse makes use of ontologies, to provide knowledge-level specifications of reusable KBS components. In this paper we describe a task ontology, which formally characterises the nature of scheduling problems, independently of particular application domains and in-dependently of how the problems can be solved. Our results provide a comprehensive, domain-independent and formally specified refer-ence model for scheduling applications. This can be used as the ba-sis for further analyses of the class of scheduling problems and also as a concrete reusable resource to support knowledge acquisition and system development in scheduling applications

    A Generic library of problem-solving methods for scheduling applications

    Get PDF
    In this paper we describe a generic library of problem-solving methods (PSMs) for scheduling applications. Although, some attempts have been made in the past at developing libraries of scheduling methods, these only provide limited coverage: in some cases they are specific to a particular scheduling domain; in other cases they simply implement a particular scheduling technique; in other cases they fail to provide the required degree of depth and precision. Our library is based on a structured approach, whereby we first develop a scheduling task ontology, and then construct a task-specific but domain independent model of scheduling problem-solving, which generalises from specific approaches to scheduling problem-solving. Different PSMs are then constructed uniformly by specialising the generic model of scheduling problem-solving. Our library has been evaluated on a number of real-life and benchmark applications to demonstrate its generic and comprehensive nature
    corecore